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SIMULTANEOUS STRESS RELAXATION IN TENSION AND CREEP

IN TORSION OF 2618 ALUMINUM AT ELEVATEI) TEMPERATURE

by

James S. Lai and William N. Findley

Abstract

Experiments are reported for stress relaxation and simultaneous

stress relaxation and creep with proportional and non proportional loading

and unloading. Results were compared with predictions of a viscous-

viscoelastic theory, and modifications, and strain hardening. Predictions

were calculated from results of combined constant-stress tension and

torsion creep and recovery tests only, which were reported previously.

Results showed that a modified viscous-viscoelastic theory predicted

all the observed features and predicted the creep and relaxation rates

reasonably well.
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Introduction

The literature on the time-dependent behavior of metals at elevated

temperature, mostly deals with creep tinder uniaxial stress states. Next

most numerous are perhaps the works on stress relaxation under simple

stress states and least numerous creep under multi-axial stress states. A few

have also considered predicting stress relaxation behavior from creep

under the same stress state (mostly uniaxial tension). Selected references

to the previous investigations of time-dependent behavior of metals under

multiaxial stress are given in [11 and [2]. No prior work on simultaneous

creep and stress relaxation of metals has been found in the literature.

The only investigation of simultaneous creep and relaxation was performed

by the authors [3,41 on full density polyurethane.

In previous papers [1,5,6] the authors investigated the creep behavior

of 2618 Aluminum at 2000C (3920F) under combined tension and torsion stresses.

In the first paper the authors developed constitutive equations to describe

the creep behavior of the material under multi-axial stress states. The

e
constitutive equations employed five strain components: linear elastic E ;

time-independent plastic cP; time-dependent positive nonrecoverable v
pos

V

and time-dependent negative nonrecoverable ce ; time-dependent recoverable

Ce From creep and recovery experiments under combined tension and torsion,

the time and stress dependence of these components were evaluated [1] for

constant stress. In [5,61 the constitutive relations developed for a constant

stress state were extended for time-dependent stress histories. The extended

constitutive equations were used to predict the creep behavior of the material

for comFined tension and torsion and tinder varying stress history, including

4 _ I
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step-up and step-down stress changes and repeated reversal of shearing

stress with and without constant tension. Paper [5] dealt with simple

stress states while paper [6] dealt with combined tension and torsion

stress states.

In the present paper, experiments involving simultaneous stress

relaxation in tension and creep in torsion are reported and discussed.

These experiments were performed on the same lot of 2618 aluminum as the

experiments in [1,5,6]. Methods of predicting simultaneous creep in

torsion and stress relaxation in tension from the constitutive equations

developed in papers [1,5,6] are presented in the present paper. Predic-

tions of stress relaxation and creep under combined tension and torsion

stress states using the proposed methods were computed and compared with

the experimental results.

Test Material

An aluminum forging alloy 2618-T61 was employed in these experiments.

Specimens were taken from the same lot of 63.5 mm (2-1/2 in.) diameter forged

rod as used in [1,5.61 and the same lot as specimen D through 11 in [71.

Specimens were thin-walled tubes having outside diameter, wall thickness

and gage length of 25.4, 1.52 and 101.6 mm (1.00, 0.060, and 4.00 irches),

respectively. A more complete description of material and specimen is given

in [1].
Experimental Apparatus and Procedure

The combined tension and torsion creep machine, Fig. I, used for the

experiments was described in [8] Lnd briefly in [1]. Tension was applied by

means of dead weights through lever A, Fig. 1. A system of counter balances
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permitted torque in either sense to be applied by adding or removing weight

from lever R. The tensile strain was monitored by using an extensometer, C,

Fig. 1, attached to the upper and lower gage points of the test specimen.

The sensitivity was 1 x 10-6 for tensile strain. Shear strain was measured

by a mechanical device, employing a microscope D, Fig. 1, whose sensitivity

was 1.5 x 10-6 for tensor shear strain. During a stress relaxation test,

the tensile strain was maintained constant by means of a servomechanism

whose input was the difference between the voltage generated from the command

signal (desired strain level) and that from the actual strain response. The

output from the servo-controller drove a servo-valve, E, Fig. 1, which

controlled the flow of hydraulic fluio from the pump to the hydraulic cylinder,

F, Fig. 1. This cylinder was connected in series with a load cell, G, Fig. 1,

and used to apply the load to the test specimen through a hooked rod to a

loading lever, A, Fig. 1. The load applied to the specimen was measured by

the load cell to a sensitivity of 9 g (0.02 pound).

The specimen, Ii, Fig. 1, was heated internally by a quartz-tube

radiant-heating lamp and externally by two resistance heaters at the ends

just outside the gage length. The details of temperature control for the

experiment were described in [1,71. Measurements made during the experi-

ments indicated a temperature variation of ±0.6*C (+11:) both with time

and with position along the gage length of the specimen.

After the set-up, the specimen was soaked at the test temperature of

200"C for approximately 18 hr. prior to testing. The influence of aging

on the experimental results, as discussed in [1,5], indicated that during

the testing time of the experiments reported the creep rate increased

about 1/2 percent per hr., which is considered negligible.
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Experimental Results

The results of four combined tension relaxation and torsion creep

experiments are shown in Figs. 2 to 5 respectively. The loading and

straining programs for each test are shown in inserts on each figure.

In Fig. 2A a constant tensile strain was maintained in period 1 and

a typical stress relaxation curve was observed. In periods 2 and 3, Fig. 2,

a constant torque was added and removed while the tensile strain was kept

constant. In period 2, Fig. 2A, a new primary-type relaxation occurred.

The rate of the stress relaxation continued unchanged into period 3 upon

removal of the torque. In Fig. 2B, the usual shape of creep and recovery

behavior were observed for the shear strain for period 2 and 3. In the

fourth period, Fig. 2, the tensile stress (not the strain) became zero.

The reason that the specimen did not recover at zero strain was that the

testing machine was not designed to take a compressive force. If the

specimen were to recover at zero tensile strain a compressive force would

have been required.

The experiment in Fig. 3 involved simultaneously applying constant

strain in tension and constant shearing stress in torsion in the first

period. Stress relaxation in tension and creep in torsion were observed

as shown in Fig. 3A and 3B respectively. In the second period, Fig. 3,

the shearing stress was increased about 10 percent while the tensile

strain remained constant. The results shown indicate that both the stress

relaxation and creep behaviors in period 2 continued without significant

change in character from the first period. In period 3, the tensile strain

Wa.s kept cunstant while the shearin.,, stress was removed. The rate of

__ __ _ __ _ __i



stress relaxation in period 3 Fig. 3A continued essentially unchanged from

that in period 2. The usual recovery of the shear strain in period 3 Fig. 3B

was observed. In the subsequent periods, a constant shearing stress was

repeatedly added and remoied three times while the tensile strain was kept

constant. In Fig. 3A, periods 4, 6, and 8, (when the shearing stress was

on), the stress relaxation behaved as if the shear stress were on continuously

from period 4 to 8 (not influenced by the intervals of unloading). Period 5

showed a continued relaxation while period 7 showed a rebound in stress.

Other instances of rebound occurred in periods 3 and 5, Fig. 4A. In Fig. 3B,

the successive loadings in periods 4, 6, and 8 resulted in decreasing creep

rates. In periods 5 and 7, recovery was obsorved.

In Fig. 4 the first three periods are similar to those of Fig. 2A except

for a higher tensile strain (0.29%). The resp-nses of the first three

periods in this test were very similar to those shown in Fig. 2. In periods

4 and 5, a constant shearing stress (greater than the shearing stress in

period 2) was added and removed. A rapid stress relaxation was observed in

period 4, Fig. 4A, while a small increase in stress was observed in periods

3 and S. The results in period 4 of Fig. 4A and periods 4, 6, and 8 of

Fig. 3A indicate that upon reloading in torsion to a higher value while

keeping the tensile strain constant, a rapid tensile stress relaxation

resulted. On the other hand, if the reloading of torsion was to the same

magnitude, the rate of tensile stress relaxation continued as if the shear

stress was uninterrupted. In Fig. 4B, periods 4 and 5 characteristic

creep and recovery behavior were observed.
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Fig. S involved simultaneously applying constant tensile strain and

shearing stress in period 1. In period 2 the tensile stress was removed

while the shearing stress was kept constant. This was followed by removal

of shearing stress in period 3. Characteristic stress relaxation in tension

and creep in torsion were observed in period 1. In period 2, Fig. SB upon

removal of tensile "stress," the creep in torsion was continued as if no

removal of tensile "stress" had occurred. In period 3, Fig. 5B, a recovery

in shear strain was observed. In periods 2 and 3 Fig. SA the stress was

reduced to zero rather than the strain being reduced to zero. Thus no

further stress relaxation occurred. Instead a "creep" recovery occurred

at zero stress which is not shown.

In the following sections the constitutive equations developed in

[1,5,6] for creep behavior of the same material are presented and used to

predict the stress relaxation and creep behaviors shown above.

Discussion of Experimental Results;

Comparison with Combined Stress Creep

A comparison of the results of the present experiments on histories of

variable simultaneous relaxation in tension and creep in torsion shows

similar features to those found in variable combined tension and torsion

creep [6]. Among these similar features are the following: (a) When a

shearing stress T was added to a tensile relaxation at a constant tensile

strain E 11 a new "primary" type stress relaxation resulted as in period 2

Fig. 2A, and periods 2 and 4 Fig. 4A. (b) When the shearing stress T was

removed to zero while the tensile strain c 1 remained constant there was

no significant change in the pattern of stress relaxation in tension as

shown in period 3 Fig. 2A. Similar but not as well defined behavior is
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also shown in period 3 Fig. 3A, and periods 3 and 5 Fig. 4A. (c) When the

tensile stress a was changed to zero during tensile relaxation while the

shearing stress remained constant the creep c12 continued as though there

had been no change. See period 2 Fig. 5B. (d) When the tensile stress

was changed to zero following constant strain relaxation while the shearing

strain c12 was recovering from prior creep at a shearing stress T a new

recovery type behavior was initiated in e12 as shown in period 4 Fig. 2B.

Constitutive Equations for Creep Under

Combined Tension and Torsion

In the previous papers (1,5,61 it was shown that creep of specimens of

the same lot of 2618 Aluminum at 200*C under combined tension and torsion

were adequately described by the following relation:

Sij(t) = Eij + Ci + .iM(t) + ye (t) ' (1)

e v and ye

where e aij d c, v represent the time-independent elastic strain, time-

dependent nonrecoverable (viscous) strain and time-dependent recoverable
v

(viscoelastic) strain, respectively, and E.. was further resolved intoij

positive and negative components. The time-independent plastic strain

J  was found to be zero in the experiments. The elastic modulus F , shear
13 0e '

modulus G and Poisson's Ratio v for the elastic strain component e for

the material at 200 0 C as reported in [1,5,6] is given in Table 1. The

constitutive relations for cv' (t) and E. . (t) under constant stresses and

time-dependent stresses as employed in [1,5,6] are reviewed in the following.
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Constant Stress

Under constant stress, the components c and c under combined

tension a and torsion T %,ere represented by the following equations:

Cve ( t ) = ,))_,)t n (2Eve(t) = (--L) F [(o-,') (T-T')Itn (2)

veR (3)(_,)t
C12(t) (C---) G (4)

t 1 ,+R
1( )=(i-;j) F [(-) (I-f')n (4)

Vl (t 1 , ,( _ , tn
= (+iR G [((-a' ,(-t]t()

The nonlinear functions of F and G in (2-5) were derived from a third

order multiple integral representation [4], where

F(a-a ,T-T') F (a-a ')+ F2(a-a + F3 (a-a ')
2 2 (6)

+ F4 (a-a')(t-' )  + F S ( -T')

G (y-',t-t') = Gl(T-') + G2 (--T' 3 +
12 {73-

+ G(a4(-a') (T-T') (7)

and a', r' are the components of the creep limit. In the original forru-

lation [1], a Tresca form, as shown in the following, was employed for

the creel) limits (u' and -') under combined tension-torsion stresses,

2 2 2 2
(=) + 4 (') (a*) (2T*) ,

(8)
a'/a = /

where a* and T* are the creep limits under pure tension and pure torsion

respectively. The coefficients of Fi, Gi , and values of a*, T*, R and n

were derived from constant combined tension-torsion creep and recovery tests

reported in [1] and shown in Table 1. The values of the coefficients corres-

ponding to (0-8) were given in [1] and corrected in [S].
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It was shown in [61 that using the variable creep limits a', T' and (8)

did not predict the experimental results quite as accurately as using fixed

creep limits o* and T*. In the present paper, calculations were made using

the fixed creep limits, a* and T*, as well as G', '. The calculations of

the predicted creep and relaxation curves shown in Fig. 2-5 are for G', T'

Similar calculations made for the fixed creep limits a*, T* are not sho%,m.

The results were somewhat better for a', T' than a*, T* and are more

generally applicable.

Time-Dependent Stress

The modified superposition principle (MSP) as derived from the multiple

integral representation was shown in [3.4] to be able to describe time-

dependent recoverable (viscoelastic) strain. Under a continuously varying
ye

stress a, the strain response E given by the modified superposition

principle was represented for nonlinear behavior in [5,6] by

t
Cve~t f ij Fa(F ),I-() t- d& p))

0

where f ij(o,t) represents the nonlinear-stress and time-dependent creep

function such as (2) and (3) for Eiand E respectively, and here

E(t) = (t) - a' and T-(t) = T (t) - T' For a series of m stcp changes in

stress as employed in the present work, (9) becomes as follows for E v2 for
12

example:
ve R 1 n1

S( - (t3 T )[(t )n] (9a)

n-I n-1 n-2 M-1

"+G(OM ,)t-t m)n1)il < t
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For the time-dcpcndent nonrecoverable (viscous) strain component cv

* it was shown in [S,61 that a strain hardening thecry reasonably described

the behavior of this strain component under a time-dependent stress input.

The strain-hardening theory for c eand c 12 can be rep~resented by the

following equations:

v jI h { o( ) ( )] 1/n n~ ( 0

E 2W = T'-T If [[( ),T(C)]}~ d&J (11)

Equations (10) and (11) were derived from (4) and (5), respectively,

using the strain-hardening concept as described in [1,5].

For a series of m step changes in stress, as employed in the present

paper, (11) for example becomes as follows:

C (t) ( +-)[ ut) at + [G. (C T( -

12 +1 m 11 -1 1 2)

-[ -o ) 1/n ~ n
+ G(rn ,n (t 1 -) 2<t

\iscous-Viscoelastic (VI,) Theory

The total strain following a time-dependent stress history was found

according to (1) by adding to the elastic strain corresponding to the

stresses existing at the time of interest the c £ given by (9) and the E

given by (10) or (11) for axial strain or shear strain. Thus,

E t + -iR {F[G(&),T( )]1l/ d ](1

t

+ I"[(; (r,)tJ I- T()I+R jat&O d

f _______
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t - {G[o-(C),T-() I/n dn

1 2 2 1( 1 3 b )

t

++ () a()()t-]()d&

0

where F and G are the elastic modulus and shear modulus respectively.

Modified Viscous-Viscoelastic (MVV) Theory

In [5,6] it was found under partial unloading that the observed charac-

teristics of creep behavior of the material were not properly predicted by

the '' theory. It was found, however, that the MVV theory employed it [5]

described the creep behavior of the material under partial unloading more

closely than the VV theory. In the following, the MVV theory, which will be

used also in this paper, is reviewed. The basic difference between the .IVV

and the VV theories is in the treatment of the creep limits for the recov-

ye
erable strain E . These differences in treatment are illustrated in Fig. 6.

(A) For the nonrecoverable strain component, the strain hardening rule

was employed. Upon reduction of stress from aA to a current stress aBP

Fig. 6(a), the strain rate v continued at the reduced (positive) rate

prescribed by the strain hardening rule, (10) and (11), as shown in Fig. 6(a),

unless the current stress aC equaled or was less than the creep limit a*

(or o'). When a C < o* (or a'), v was zero as prescribed by (10) and (11),

see Fig. 6(a).

(B) Upon reloading from a stress aC below to a stress a above the creep

limit, the nonrecoverable strain rate c resumed at the rate prescribed by

(10) and (11) but as though there had been no interval tx for which a C< *

(or u'), see Fig. 6(c).

j-
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ye

(C) For the recoverable strain component c on partial unloading the

recoverable strain rate ve became and remained zero for all reductions of

stress from aA to aBP as shown in Fig. 6(b) unless the total change in stress

from the highest stress amax [=0A in Fig. 6(b)] previously encountered to the

current stress aC equaled in magnitude the creep limit a* (or a'). That is,

,e 0 when (OA-B) <. 10*1 (or a') , (14)

ve 0 when (A-aoC) > 10*1 (or a') (15)

Equation (14) can be considered as meaning that for a small unloading the

recoverable strain component was "frozen." Equation (15) indicates that if

the change in stress was greater than ]o*1 or lu' then recovery would occur

followed eventually by creep, see Fig. 6(b).

(D) Upon increasing the stress to aD (aD > a 0A) following, a period tx

(a dead zone) for which (0max-3B) , [0*1 (or c') and .ve . 0, as discussed in
ye

(C) above, the recoverable strain component e continued to creep in accordance

with the viscoelastic behavior (9) as though the period t never occurred, seex

Fig. 6(c). In computing the behavior for situations described in (B), (C) and

(D) it was thus necessary to introduce a time shift in equations (9), (10) or
ye

(11) to eliminate the appropriate period tx when v was "frozen." Thus, the

new time t' subsequent to a period t x = (tb-ta) becomes t' = t - (tb-ta),

where t is the real time and t a th are the times wheno A ',as removed and GD

was applied.

(F) When recoverable and nonrecoverable strain components are considered

together two special circumstances arise. Consider that the stress decreases

from the highest value uA to a lower value a under a uniaxial stress state.
v

If aA > 2a* and o* a B ( o-a*) then there is creep occurring from c and
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ve

recovery from c However, if 0 A < 20* and (oA-o*) < o < o* then there is

neither creep nor recovery, v = = 0.

(F) When one stress component decreased while the other remained constant

ve
the recoverable strain component E was treated as follows. The material

behavior in such situations suggested that reducing or removing one stress

component, say T, while the other component, say a, remained constant affected

the strain as follows. The strain corresponding to mixed stress components

behaved as though these mixed components had suffered a small stress reduction.

That is, the strain, say Ell, associated with the mixed stress components, say

2 2
ot , T , became constant. The strain, say cll associated with the pure stress

2 3
terms, say a, a , a which were unchanged, continued as though nothing had

happened.

Strain-Hardening (SH) Theory

The total strain under this theory can be represented by the following

equations according to (10) and (11)

E 1 (t) M(t) + {F [a), T-(,)} 1/n dr, , (16)11~t E I---

12 ' (t) {+ [ C(F) ,T d- /n (17)

Prediction of Simultaneous Creel in Torsion and Relaxation in Tension From

Combined Stress Creep Data

Since creep and stress relaxation behaviors are two aspects of time-

dependent behavior of materials, one behavior should he predictable if the

other behavior is known. In other words, in a "tensile stress relaxation"

test for example, the stress response of a material under a constant axial

strain input may he considered as equivalent to a tensile "creep" test
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with an undetermined time-dependent stress applied to the specim'en such

that a constant axial strain results throughout the testing, period. The

prediction of simultaneous creep and relaxation from combined stress creel

to be described in the following is based on this premi se.

Some investigators have considered a relaxation test to he fundamentally

different from a creep test - that the material has a constant strain state

in relaxation compared to a changing, strain state in creep. However, the

strain state is not contnt ,lirinp a relaxation test. In an axial relaxation

test only the axial strain component remains constant while the transverse

strains are time dependcnt [4] unless the relaxation is volime constant, uhich

is not true in general. On the other hand, in a constant-stress creep test

all stress components are constant.

The simultaneous stress relaxation in tension and creep in torsion

when the snecimen is subjected to constant tensile strain and constant

shearing stress in torsion can bc considered as one of combined tension

and torsion creep with variable (time-dependent) tensile stress and con-

stant shearing stress in torsion. The desired time-dependent tensile

stress a(t) is unknown. This unknown stress a(t) has to satisfy the

condition that the tensile strain produced by the prescriled constant

shearing stress and this unknoiNn varying tensile stress o(t) acting together

on the specimen must equal the prescribed constant tensile strain. For the

VV theory this is equivalent to solving the nonlinear equation (1.3a) for

G(t) with E and T(t) prescribed. Once a(t) has been determined from (13a)

the corresponding shearins, strain -an bc obtained from (131).

The iterative procedures used to solve for o(t) from (13a) for the VV

theor,. iith prescribed tensile strain r 1 1 (t) annd shearing; stress T(t) are

_ _
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described in the following. According to this numerical procedure, the

prescribed c11 (t) and (t) were divided into a number k of intervals of time

(m=l. .. k). In the first step the E 1 1 (1) and T(l) were known. Neglecting

the time-dependent responses, the initial tensile stress S(l) = cl1(l) E was

determined. Nith S(l) and t(l) for tile first step, tile S(t1) and T(t 1 ) at

the end of the first interval were computed from (13a). Similarly with S(t

at the end of the rn-i interval the S(t) and T(tI) were determined from (13a)

using the entire stress history from t = 0 to t = t The difference between
111

th
the copnted tensile strain and the prescribed tensile strain for the In

interval, e(t e - w(t was computed. c 1 1 (t) represented the

prescribed tensile strain at t = t The Ae(tm) was used to determine the

correction for the assumed tensile stress S(t ). Thus, the corrected tensile

stress o(t ) equals fS(t In) - Ae(t) I F . The correction was based on the

elastic response only. o(t M ) so determined represented the relaxation stress

at t = t . This corrected tensile stress history a(t) and the prescribed

shearing stress history T(t) for t = 0 - t Inwere used to compute the shearing

strain ,ising (13b) for the VV theory.

In the next step (t = t the approximate tensile stress S(t +)

ias determined by S(t 1 ) = (t) + fr 1(t l) - (t n . For a con-

stant strain relaxation condition, c (t 1) = c(t ), thus, S(t ) =11 M+l 11 in 11+1

'7(t M). The S(t ) aloni with the previous tensile stress history ry(t)

and the shearin, stress history -(t) for t from 0 to t mIwere used again

to corpute the tensile strain response e(t M+) usinog (13a). From that

the relaxational stress at t = t was determined.nil

hhen using the 'IV\ theory the procedure was almost identical to that

descrif)ed above except the ,modifications (C), (1), and (1') descrihed in

the preceedinI :;ection %,ere properly incorporated. For example, when
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predicting the relaxational stress in periods 1, 2 and 3 of the test program

shown in Fig. 2A, the third term (C'el) on the right side of (13a) became

zero, I)ecause a stress relaxation can be considered as a small partial

unloading in a creep test, thus according to (C) of the 'VV theory, E = 0.

For predicting c 1 2 (t) of periods 2 and 3 of the test program shown in Fig.

2A, the G(C,T) function in the third term of the right side of (13h) con-

tained two terms ,1r and G2 - instead of four terms as shown in (7)

according to (F) of the MVV theory.

W'hen using the SJI theory for the predictions, equations (13a) and (13b)

used in the VV theory were replaced by (16) and (17) , respectively.

The procedures descriLed above were employed to calculate the response

of the simultaneous stress relaxation in tension and creep in torsion of

2618 aluminum at 200°C for the histories shown in Fig. 2-5. In using these

procedures it was found that the time interval selected could affect the

numerical accuracy. A sensitivity analysis was conducted to determine the

affect of time interval on the accuracy of the numerical computations. It

was found that close to the region where the E1 1 (t) changed abruptly a time

interval greater than 0.001 hr. could significantly affect the accuracy of

the predictions. Consequently in all the predictions carried out in this

nrogram, thie time interval was chosen to be 0.001 hr.

Comnarison of Predictions with Fxperipmental Results

C ree-iv: As shown in Fig. 2B, 38, 4B, and SB, the prediction of the shearing

creep component (strain c12) for the first application for shear stress T

compared well with tile test data. This was true for all three theories.

As noted before these predictions were based on the numerical constants

determined entirely from creep and recovery tests under constant combined
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tension and torsion and given in Table 1. All of these experiments in

Fig. 2-5 included relaxation in tension simultaneously with the shearing

creep. In Fig. 3B and SB the creep and relaxation started simultaneously,

while in Fig. 2B and 4B the relaxation started before the shearing stress

was added.

For subsequent periods the shearing strain was reasonably well pre-

dicted by either the VV or MVV theories, but not properly predicted by the

SH theory when the shearing stress was removed. The NVV theory was lower

than the VV theory when tensile relaxation preceeded the torsion creep.

No prediction was made for periods 4 Fig. 2B or periods 2 and 3 Fig. 5B

because the recovery of E11 was at constant stress rather than constant

strain. The creep in period 4 Fig. 4B was not well predicted. This is

consistent with the observation for combined stress creep under multiple

stress changes at high stresses [6], that the predicted creep rate was too

low.

Relaxation: Figures 2A, 3A, 4A and SA show that the prediction of the

magnitude of the tensile relaxation for the first two periods compared

with the test data about as well as the comparison for the creep component

of the same tests. The best comparison of magnitudes was found with the

VV theory (the SII theory was usually nearly the same).

In Fig. 3A and SA the stress relaxation and creep started simultaneously.

In Fig. 2A and 4A the creep (shear stress T) started one hour after the

start of relaxation. In this case the predicted relaxation rate was some-

wha:t greater than observed and not as close to the test data as in Fig. 3A

and SA.

When the torque was removed while the tensile strain remained constant,

the VV theory predicted a reversal of the relaxation which was not observed,
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see period 3 Fig. 2A, periods 3, 5 and 7 Fig. 3A and periods 3 and 5 Fig. 4A.

This was due to the same feature of the theory that caused a prediction of

recovery that was not observed in combined tension-torsion creep when one

component went to zero. The reversal of relaxation predicted by the VV

theory was due to the fact that, upon removal of torque, the last two terms

in (6) vanish. This caused a sudden drop in the tensile strain rate. In

order to maintain the constant strain imposed by the test program, the

tensile stress had to increase accordingly. The SiF theory predicted no

change in stress and the MV theory predicted a small decreasing stress

but not as much as observed in period 3 Fig. 2A for example.

General: The MVV theory predicted the character of all of the various

features of the test results for both the creep and relaxation components.

On the other hand the VV theory predicted a trend opposite to that ol-served

during relaxation ihen the shearing stress was removed while the tensile

strain remained constant. The S11 theory failed to predict the observed

recovery when the shearing stress went to zero.

Comparing the magnitudes of creel) strains or relaxation stresses

predicted with the observed values shows that the MVV theory usually

predicted hit-her stresses in relaxation and higher strains in creep than

the observed values and generally higher values than predicted by the VV

and SF1 theories.

Iowever, if comparison is made on the basis of time dependence alone,

that is on the basis of creep or relaxation rate, it may he shown that in

general the prediction of the WIVV theory is the best. The kR'V theory

ias hest or the sane in this respect as the VV theory in the following:

Fig. 2; Fi:z. 3 (excep t F 3A period 4); Fig. 4 (except Fig. 4A period 4,

Fig. -I Period 4) and Fig. 5.

At
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All curves shown in Fig. 2-5 employed variable creep limits a', T' (8).

The use of fixed values of a* and T* for creep limits yielded differences

which were sometimes improvements and sometimes not. Since fixed values of

o*, T* lose their meaning for stress states in which one component is below

the creep limit the results for fixed creep limits are not shown in the

Figures.

Conclusions

Results of experiments on simultaneous creep in torsion and relaxation

in tensions were presented. These included proportional and non-proportional

loading, unloading and reloading. In general the features of the material

response were similar to those observed under combined tension and torsion

creep.

Three theories were used to predict the material response to the

several mixed load-constraint histories tested. These predictions were

made using the results of constant load creep and recovery experiments under

combined tension and torsion only. Results showed that a modified viscous-

viscoelastic (MWV) theory predicted all the observed features and in general

had the best prediction of creep and relaxation rates.
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Table 1. Constants for Equations (2) through (13) Using o'

for F'', G' and G

F += .08 x10 12, per Pa-h n(0.004195, % per ksi-h n)

+ -20 2 n 2 n
F2 = .431 x 10 , per Pa _h (-0.0003533, % per ksi -h)

F+ -756xi 28  3 n 3 n
F 3 =7.596x 10 , per Pa -h (0.0000249, % per ksi -h)

a*=9.143 x 10 7, Pa (13.26, ksi)

1 +=710x1-1, per Pa-h n(0.004944, % per ksi-h n)

+ -28 3 n 3 n
G 2.703 x 10 ,per Pa-h (0.00000886, %per ksi -h)

7
*= 4.571 x 10 , Pa (6.630, ksi)

F = 1.0491 x 10- 2,per Pa3- h 11(0.000003439, % per ksi 5-h)

F5 0

+4 = -00xi 20  2 n 2 n
G3 = .00x1 , per Pa _-h (-0.0001911, % per ksi _h)

-9 2 x i 28  3 3n
G 4 =9.222x 10 , per Pa _-h (0.00003023, % per ksi _h)

Note: n = 0.270

R a 0.55
4 6

E = 6.5 x 10 MWa (9.43 x10 psi)
4 6

G = 2.45 x 10 MPa (3.57 x 10 psi)

v = 0.321
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Figu.re Captions

Fig. 1 Apparatus for Simultaneous Stress Relaxation in Tension and

Creep in Torsion.

Fig. 2A Stress Relaxation in Tension with and without Added Torsion.

Ti = 79.63 'iPa (11.55 ksi)

Fig. 2B Creep in Torsion During Stress Relaxation in Tension.

T, = 79.63 MPa (11.55 ksi)

Fig. 3A Stress Relaxation in Tension Simultaneously with a Program of

Creep in Torsion.

T, = 55.50 MPa (8.05 ksi)

T2 = ol. I MIPa (8.85 ksi)

T 3  = 79.63 ,IPa (11.55 hsi)

Fig. 3B Creep in Torsion During Stress Relaxation in Tension.

T = S5.50 MPa (8.05 ksi)

T2 = 61.01 !11)a (8.55 ksi)

T3 = 79.63 .MPa (11.55 ksi)

Fig. 4A Stress Relaxation in Tension with Periods of Added Torsion.

T, = 79.63 MPa (11.55 ksi)

T2 = 95.55 !Pa (13.86 ksi)

Fig. 413 Creep in Torsion During Stress Relaxation in Tension.

T1 = 79.63 .Pa (11.55 ksi)

T2 = 95.55 :,IPa (13.86 ksi)

Fig. 5A Stress Relaxation in Tension Simultaneously with Creep in Torsion.

T 1 = 79.o3 MPa (11.55 ksi)

Fig. 5B Creep in Torsion Simultaneously with Stress Relaxation in Tension.

T1 = 79.,3 NIPa (11.55 ksi)

Fig. 6 Illustration of the Role of the Creep Limit in Partial Unloading

and Reloading.
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